metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ray J. Butcher,^a* Garry M. Mockler^b and Owen McKern^b

^aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and ^bDepartment of Chemistry, University of Wollongong, NSW 2522, Australia

Correspondence e-mail: butcher@harker.nrl.navy.mil

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.032 wR factor = 0.086 Data-to-parameter ratio = 14.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[(pyridine- κN)copper(II)]- μ -N-salicylideneglycinato- $\kappa^4 O$, N, O':O']

The tridentate Schiff base ligand derived from the condensation of salicylaldehyde and glycine, in the presence of pyridine, forms the title polymeric square-pyramidal five-coordinate copper complex, $[Cu(C_5H_5N)(C_9H_7NO_3)(C_5H_5N)]$, in which the copper centers are linked *via* the carboxyl O atoms of neighboring groups occupying the apical site. Received 8 October 2003 Accepted 30 October 2003 Online 8 November 2003

Comment

Galactose oxidase is a type II copper protein that catalyses the oxidation of primary alcohols to aldehydes with a concomitant reduction of molecular oxygen (Whittaker, 1994). Its crystal structure (Ito et al., 1994) reveals a unique mononuclear Cu site with two N-donors (from histidine imidazole groups), two O-donors from one axial and one equatorial tyrosine groups, and an exogenous water or acetate molecule, all arranged in a distorted square-pyramidal coordination. Several different theories have been proposed to explain how galactose oxidase, which contains a single Cu atom, can catalyse a two-electron redox reaction. The currently accepted theory (Whittaker & Whittaker, 2001) suggests that the 'inactive' form of galactose oxidase is oxidized by the loss of one electron to produce the 'active' form, which contains a tyrosine (tyrosine 272) free radical ion coupled to the Cu^{II} ion. The active form is then reduced to the Cu^I species and the alcohol oxidized to the corresponding aldehyde.

There has been considerable interest in the study of model compounds of galactose oxidase in recent years (Butcher *et al.*, 2003*a,b,c*; Kruse *et al.*, 2002; Shimazaki *et al.*, 2002; Thomas *et al.*, 2002). One group of compounds that has attracted considerable interest consists of five-coordinate copper complexes with tridentate Schiff base ligands derived from the condensation of amino acids with substituted salicylaldehydes. In this type of complex, the Cu coordination sphere also contains a monodentate Lewis base. With two exceptions (Plesch *et al.*, 1997; Sivy *et al.*, 1994), X-ray crystallographic studies have shown that these Cu^{II} compounds contain Cu^{II} in a distorted square-pyramidal environment and are of three

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The asymmetric unit of (I), together with the completion of the Cu-atom coordination, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 20% probability level. H atoms are represented by circles of arbitrary size. Atom O3A corresponds to atom O3ⁱ in Table 1.

Figure 2

The molecular packing, viewed along the b axis, showing the chain of complexes linked through the carboxyl O atoms.

main types: (i) monomeric with a water molecule occupying the fifth coordination site (Butcher et al., 2003a; Dawes et al., 1982; Fujimaki et al., 1971; Garcia-Raso et al., 1996; Korhonen & Hamalainen, 1979; Ueki et al., 1969; Warda et al., 1996; Warda, 1997g, 1998a,d,e,f); (ii) dimeric with an adjacent phenolic O atom occupying the fifth coordination site (Butcher et al., 2003c; Davies, 1984; Hamalainen et al., 1978; Hill & Warda, 1999; Warda, 1997b,e, 1998b,c,e,g, 1999; Warda et al., 1998); (iii) polymeric with the fifth coordination site occupied by an adjacent carboxyl O atom (Butcher et al., 2003b; Ueki et al., 1967; Kettmann et al., 1993; Korhonen et al., 1984; Plesch et al., 1998; Warda et al., 1997; Warda, 1997*a*,*b*,*c*,*d*,*f*; Sivy et al., 1990).

The tridentate Schiff base ligand derived from the condensation of salicylaldehyde and glycine, in the presence of pyridine, forms a square-pyramidal five-coordinate Cu complex of type (iii). In this complex, the carboxyl O atom from an adjacent molecule occupies the apical site at a distance of 2.420 (2) Å, forming a polymeric chain in the bdirection. The Cu atom is displaced by 0.1603 (9) Å from the

basal plane formed by atoms O1, O2, N1, and N1P. The Cu-O1, Cu-O2 and Cu-N1 bond distances in the equatorial plane [1.928 (2), 1.976 (2) and 1.943 (2) Å, respectively] do not differ significantly from those of similar type (iii) polymeric compounds mentioned above.

Experimental

The title complex was synthesized in two stages. In the first stage, 10 g of glycine and an equimolar amount of sodium hydroxide were dissolved in 300 ml of hot water. To this solution was added an equimolar quantity of copper sulfate pentahydrate dissolved in 100 ml of water. The blue-purple [Cu(gly)₂].nH₂O compound precipitated on cooling. 6 g of this compound, two molar equivalents of salicylaldehyde, triethylamine (10 ml) and pyridine (10 ml) were refluxed in methanol for 1 h. The hot solution was filtered and allowed to stand until a dark-green product precipitated from solution. X-ray quality crystals were grown by slow evaporation of a methanol/acetonitrile solution.

Crystal data

$\begin{bmatrix} \text{Cu}(\text{C}_{5}\text{H}_{5}\text{N})(\text{C}_{9}\text{H}_{7}\text{NO}_{3})(\text{C}_{5}\text{H}_{5}\text{N}) \end{bmatrix} \\ M_{r} = 319.80 \\ \text{Monoclinic, } P2_{1}/c \\ a = 11.8517 (15) \text{ Å} \\ b = 11.7867 (17) \text{ Å} \\ c = 9.6046 (11) \text{ Å} \\ \beta = 102.929 (8)^{\circ} \\ V = 1307.7 (3) \text{ Å}^{3} \end{bmatrix}$	$D_x = 1.624 \text{ Mg m}^{-3}$ Mo Ka radiation Cell parameters from 40 reflections $\theta = 4.7-12.5^{\circ}$ $\mu = 1.68 \text{ mm}^{-1}$ T = 293 (2) K Plate, green
Z = 4	$0.79 \times 0.63 \times 0.12 \text{ mm}$
Data collection	
Bruker P4 diffractometer	$\theta_{\rm max} = 27.5^{\circ}$
$2\theta/\omega$ scans	$h = -15 \rightarrow 15$
Absorption correction: ψ scan	$k = 0 \rightarrow 15$
North et al., 1968	$l = 0 \rightarrow 12$
$T_{\min} = 0.447, \ T_{\max} = 0.818$	3 standard reflections
2698 measured reflections	every 97 reflections
2698 independent reflections	intensity decay: 0.2%
2267 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0464P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.032$	+ 0.4318P]
$wR(F^2) = 0.086$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} = 0.001$
2698 reflections	$\Delta \rho_{\rm max} = 0.42 \ {\rm e} \ {\rm \AA}^{-3}$
181 parameters	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Cu-O1	1.9277 (17)	O1-C2	1.305 (3)
Cu-N1	1.9426 (19)	O2-C9	1.277 (3)
Cu-O2	1.9757 (16)	O3-C9	1.237 (3)
Cu-N1P	2.013 (2)	O3-Cu ⁱⁱ	2.4197 (18)
Cu-O3 ⁱ	2.4197 (18)		. ,
O1-Cu-N1	92.30 (8)	N1P-Cu-O3 ⁱ	87.45 (8)
O1-Cu-O2	169.10(7)	C2-O1-Cu	127.09 (15)
N1-Cu-O2	83.39 (7)	C9-O2-Cu	116.18 (15)
O1-Cu-N1P	90.94 (8)	C9-O3-Cu ⁱⁱ	131.54 (16)
N1-Cu-N1P	170.66 (8)	C7-N1-Cu	127.49 (16)
O2-Cu-N1P	91.86 (8)	C8-N1-Cu	113.35 (14)
$O1-Cu-O3^i$	98.79 (7)	C2P-N1P-Cu	120.59 (18)
N1-Cu-O3 ⁱ	100.69 (7)	C6P-N1P-Cu	121.86 (17)
$O2-Cu-O3^i$	91.86 (6)		

Symmetry codes: (i) $x, \frac{3}{2} - y, \frac{1}{2} + z$; (ii) $x, \frac{3}{2} - y, z - \frac{1}{2}$.

All H atoms were placed in calculated positions, with C–H distances ranging from 0.93 to 0.98 Å, and included in the refinement as riding, with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}$ of the carrier atom.

Data collection: *XSCANS* (Siemens, 1994); cell refinement: *XSCANS*; data reduction: *XSCANS*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

RJB acknowledges the DoD ONR program for funds to upgrade the diffractometer.

References

- Butcher, R. J., McKern, O. & Mockler, G. M. (2003*a*). Acta Cryst. E**59**, m20–m22.
- Butcher, R. J., McKern, O. & Mockler, G. M. (2003b). Acta Cryst. E59, m61–m63.
- Butcher, R. J., McKern, O. & Mockler, G. M. (2003c). J. Chem. Crystallogr. 33, 895–899.
- Davies, J. E. (1984). Acta Cryst. C40, 903-904.
- Dawes, H. M., Waters, J. M. & Waters, T. N. (1982). *Inorg. Chim. Acta*, **66**, 29–36.
- Fujimaki, H., Oonishi, I., Muto, F., Nakahara, A. & Komiyama, Y. (1971). Bull. Chem. Soc. Jpn, 44, 28–34.
- Garcia-Raso, A., Fiol, J. J., Badenas, F. & Quiros, M. (1996). Polyhedron, 15, 4407-4413.
- Hamalainen, R., Turpeinen, U., Ahlgren, M. & Rantala, M. (1978). Acta Chem. Scand. Ser. A, 32, 549–553.
- Hill, E. & Warda, S. A. (1999). Acta Cryst. C55, 1431-1434.
- Ito, N., Phillips, S. E. V., Yadav, K. D. S. & Knowles, P. F. (1994). J. Mol. Biol. 238, 794–814.
- Kettmann, V., Fresova, E., Blahova, M. & Kratsmar-Smogrovic, J. (1993). Acta Cryst. C49, 1932–1934.
- Korhonen, K. & Hamalainen, R. (1979). Acta Chem. Scand. Ser. A, 33, 569– 575.
- Korhonen, K., Hamalainen, R. & Turpeinen, U. (1984). Acta Cryst. C40, 1175– 1177.
- Kruse, T., Weyhermuller, T. & Wieghardt, K. (2002). *Inorg. Chim. Acta*, 331, 81–89.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.

- Plesch, G., Friebel, C., Warda, S. A., Sivy, J. & Svajlenova, O. (1997). *Transition Met. Chem.* 22, 433–440.
- Plesch, G., Kettmann, V., Sivy, J., Svajlenova, O. & Friebel, C. (1998). *Polyhedron*, **17**, 539–545.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison Wisconsin USA.
- Shimazaki, Y., Huth, S., Hirota, S. & Yamauchi, O. (2002). *Inorg. Chim. Acta*, **331**, 168–170.
- Siemens (1994). XSCANS. Version 2.10. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. (Current suppliers Bruker AXS Inc., Madison, Wisconsin, USA.)
- Sivy, J., Kettmann, V., Kratsmar-Smogrovic, J., Svajlenova, O. & Breza, M. (1994). Z. Naturforsch. Teil C, 49, 571–578.
- Sivy, J., Kettmann, V., Kratsmar-Smogrovic, J., Svajlenova, O., Friebel, C. & Plesch, G. (1990). Z. Anorg. Allg. Chem. 583, 55–66.
- Thomas, F., Gellon, G., Gautier-Luneau, I., Saint-Aman, E. & Pierre, J.-L. (2002). Angew. Chem. Int. Ed. 41, 3047–3050.
- Ueki, T., Ashida, T., Sasada, Y. & Kakudu, M. (1967). Acta Cryst. 22, 870– 878.
- Ueki, T., Ashida, T., Sasada, Y. & Kakudo, M. (1969). Acta Cryst. B25, 328– 335.
- Warda, S. A. (1997a). Acta Cryst. C53, 1186-1188.
- Warda, S. A. (1997b). Acta Cryst. C53, 697-699.
- Warda, S. A. (1997c). Acta Cryst. C53, 1010-1011.
- Warda, S. A. (1997*d*). Acta Cryst. C53, 1184–1186.
- Warda, S. A. (1997e). Acta Cryst. C53, 1588-1590.
- Warda, S. A. (1997f). Acta Cryst. C53, 1590-1593.
- Warda, S. A. (1997g). Acta Cryst. C53, 1759–1761. Warda, S. A. (1998a). Acta Cryst. C54, 187–189.
- Warda, S. A. (1996*a*). Acta Cryst. **C54**, 167–169.
- Warda, S. A. (1998b). Acta Cryst. C54, 302–304.
 Warda, S. A. (1998c). Acta Cryst. C54, 304–306.
- Warda, S. A. (1998d). Acta Cryst. C54, 768–770.
- Warda, S. A. (1998e). Acta Cryst. C54, 1236–1238.
- Warda, S. A. (1998f). Acta Cryst. C54, 1754–1755.
- Warda, S. A. (1998g). Z. Kristallogr. New Cryst. Struct. 213, 771-772.
- Warda, S. A. (1999). Z. Kristallogr. New Cryst. Struct. 214, 77-78.
- Warda, S. A., Dahlke, P., Wocadlo, S., Massa, W. & Friebel, C. (1998). Inorg. Chim. Acta, 268, 117–124.
- Warda, S. A., Friebel, C., Sivy, J., Plesch, G. & Blahova, M. (1997). Acta Cryst. C53, 50–54.
- Warda, S. A., Friebel, C., Sivy, J., Plesch, G. & Svajlenova, O. (1996). Acta Cryst. C52, 2763–2766.
- Whittaker, J. W. (1994). Metal Ions in Biological Systems, Vol. 30, edited by H. Sigel & A. Sigel, pp. 315–360. New York: Marcel Dekker.
- Whittaker, M. M. & Whittaker, J. W. (2001). Biochemistry, 40, 7140-7148.